C1 Methods ======================================= Suppose that $\mathbf{P}$ is a profile. We write $M(\mathbf{P})$ for the majority graph of $\mathbf{P}$. A voting method $F$ is **C1** if it satisfies the following invariance property: For all $\mathbf{P}, \mathbf{P}'$, if $M(\mathbf{P})= M(\mathbf{P}')$, then $F(\mathbf{P}) = F(\mathbf{P}')$. ## Condorcet ```{eval-rst} .. autofunction:: pref_voting.c1_methods.condorcet ``` ## Weak Condorcet ```{eval-rst} .. autofunction:: pref_voting.c1_methods.weak_condorcet ``` ## Copeland ```{eval-rst} .. autofunction:: pref_voting.c1_methods.copeland ``` ### Llull ```{eval-rst} .. autofunction:: pref_voting.c1_methods.llull ``` ## Uncovered Set ### Uncovered Set - Gillies ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_gill ``` ### Uncovered Set Defeat (Gillies Version) ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_gill_defeat ``` ### Uncovered Set - Fishburn ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_fish ``` ### Uncovered Set Defeat (Fishburn Version) ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_fish_defeat ``` ### Uncovered Set - Bordes ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_bordes ``` ### Uncovered Set - McKelvey ```{eval-rst} .. autofunction:: pref_voting.c1_methods.uc_mckelvey ``` ## Top Cycle ```{eval-rst} .. autofunction:: pref_voting.c1_methods.top_cycle ``` ### Top Cycle Defeat ```{eval-rst} .. autofunction:: pref_voting.c1_methods.top_cycle_defeat ``` ## GOCHA ```{eval-rst} .. autofunction:: pref_voting.c1_methods.gocha ``` ## Banks ```{eval-rst} .. autofunction:: pref_voting.c1_methods.banks ``` ### Banks with Explanation ```{eval-rst} .. autofunction:: pref_voting.c1_methods.banks_with_explanation ``` ## Slater ```{eval-rst} .. autofunction:: pref_voting.c1_methods.slater ``` ### Slater Rankings ```{eval-rst} .. autofunction:: pref_voting.c1_methods.slater_rankings ```